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The hard-sphere crystal-melt interfaces, which had been regarded as difficult to construct in computer
simulations, were realized by the molecular dynamics (MD) simulation according to the algorithm by Alder
and Wainwright [J. Chem. Phys. 31, 459 (1959)]. The fcc (100), (110), and (111) interfaces were studied. At
first, an MD simulation was done for a system which consisted of two blocks; identical heavy particles were
laid in the crystal block and identical light ones in the melt block. The crystal block was the fcc with the
density of the crystal phase, whereas in the melt block particles in the fcc arrangement were put in its central
part with the average density being consistent with the melt phase. After the melt block reached the melt state,
masses of the whole system were brought to be identical. Continuing the MD simulation farther, we obtained
the equilibrium configuration with the hard-sphere crystal-melt interface. The trajectories and the density

profiles were investigated.

PACS number(s): 68.45.—v, 64.70.Dv, 61.90.+d

Since the first molecular dynamics (MD) simulation for
the hard-core system [1] was carried out, no one could suc-
cessfully perform the MD simulation of the crystal-melt co-
existence in the three-dimensional hard-sphere (3DHS) sys-
tems. Neither the crystallization from the fluid phase nor the
coexistence with the plane interfaces has succeeded in the
3DHS system, whereas the coexistence in a two-dimensional
system was obtained early by the MD simulation [2]. Fol-
lowing Alder and Wainwright [3], one may reason that the
failures in the simulations of the crystallization in the 3DHS
system are due to the small system sizes and the short total
run times suppressing the fluctuation necessary to yield crys-
talline nuclei. Note that in the Alder and Wainwright (AW)
algorithm [4,5] the time evolution is accomplished by the
collision-by-collision approach, while for the soft-potential
system the time is evoluted by the step-by-step algorithm [5];
therefore the AW method usually requires a longer computa-
tion time as compared with the ordinary one. On the other
hand, for the nonexistence of any simulations of the 3DHS
crystal-melt interfaces, one may speculate by using crude
lattice models such as Temkin’s [6] that the absence of the
attractive force does not stabilize the hard-sphere crystal-
melt interfaces or that the hard-sphere crystal-melt interfaces
are too diffuse to construct. These speculations are, however,
not precise. A molecular theoretical approach to the above
crude model was given by Nakano [7] and is being devel-
oped by Mori et al. [8], In addition, it should be noted that
the MD simulations of the crystal-melt interfaces have been
carried out for the soft-sphere systems [9—11], which are also
comprised of pure repulsion. Hence, we expect to observe
the equilibrium crystal-melt interfaces in a 3DHS system as
well and carry out a computer simulation with large system
size.
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To construct a crystal-melt interface, we divided the sys-
tem with the periodic boundary condition into two parts,
melt and crystal blocks. At first, we put identical hard
spheres in each block. Masses of particles in the crystal
block were set to be 1000 times heavier than those in the
melt block. The crystal block was filled with particles in the
fcc arrangement with a lattice constant consistent with the
density of the crystal phase (0.545 in volume fraction ob-
tained by a single-occupancy cell method [12]), whereas in
the melt block, particles in a close-packed fcc arrangement
were put in its central part and the number of particles there
was determined so that the total melt density was consistent
with that from Ref. [12] (0.494 in volume fraction). In order
to get a quite high collision rate in the melt block, the close-
packed arrangement was adopted. Orientations of the fcc lat-
tice in both blocks were the same and the configurations for
the (100), (110), and (111) interfaces were investigated. For
respective orientations, the crystal blocks consisted of 33, 45,
and 33 layers and the total numbers of particles were 3888,
3787, and 4230. Figure 1 shows the initial configuration for
the (110) interface. Due to the periodic boundary condition,
both ends of the picture are identical, i.e., the numeral “0”
on the bottom side indicates the central layer in the crystal
block.

We carried out the MD simulations according to the AW
algorithm [4,5]. For nonidentical hard-sphere systems, the
velocity change of a particle i with mass m;, diameter o;,
and velocity v;, due to the collision with a particle j with

mass m;, diameter o; and velocity v;, is given by
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where v,-]-=v,-—-vj 5 r,-j=r,~~rj, and 0'”2(0'1'*‘ (Tj)/2 In the
case in which the diameters are identical, o;= o for all i.
Heavy particles scarcely moved, while light ones moved
well. After about 500 000 total collisions in the melt blocks,
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FIG. 1. Presentation for the crystal and melt blocks. (a) A 3D
picture of the fcc (110) interface. (b) The projection onto the xy
plane. Due to the periodic boundary condition, both ends of the side
of the frame are identical. Thus the numeral “0” on the bottom of
Fig. 1(b) corresponds to the central layer of the crystal block. In the
crystal block, there is a fcc crystal with a volume fraction of 0.545,
while in the remainder, the total volume fraction is 0.494. The nu-
meral “22” on the bottom indicates that the right end layer of the
crystal block is the 22nd layer from the Oth layer.

the particles there became disordered as shown in Fig. 2(a).
Then we set the masses of all particles identical and began
the MD simulations again until the systems were regarded as
in equilibrium. We saw, for respective orientations, no sig-
nificant difference in the density profiles at around the
1 000 000th and 2 000 000th collisions. Figure 2(b) shows
the trajectories of an identical-particle system after the

FIG. 2. (a) A snapshot after 500 000 total collisions in the melt
block for the fcc (110) interface. The melt block has been melted.
On the bottom the initial positions of the right end and the central
layers of the crystal block are indicated. (b) Trajectories of the
identical-particle system for the fcc (110) interface during 70 colli-
sions per particle at the equilibrium state. The particles in the upper
two layers are picked up for drawing. The numerals on the bottom
of the picture are the labels of the layers assigned sequentially from
the center to the right.
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FIG. 3. The density profiles for the fcc (100), (110), and (111)
interfaces. (a), (b), and (c) show the interfaces with (100), (110),
and (111) orientations, respectively. The labels of the layers are
shown on the bottom in the same manner as in Fig. 2(b) and the
initial positions of the right end layers of the crystal blocks are
emphasized, respectively. We see that the interfacial regions in
which the density profiles differ from those in the crystal and the
melt phases are extended in eight or nine layers in all the orienta-
tions. It is clearly seen in (a) and (c) that the order is created within
the regions which have been disordered.

2 000 000 collisions in total. The density profiles at the equi-
librium state are shown in Fig. 3. In spite of the absence of
the attractive force, apparent layered structures are observed
in the interfaces. In Fig. 3(a) and 3(c), we see that the layered
structures were created within the regions which had been
disordered. Figure 3 shows that the interfacial regions with
density profiles different from those in the crystal and the
melt phases are extended over eight or nine layers in each
orientation. Analysis of the intralayer orderings, calculation
of the radial distribution functions and the diffusion coeffi-
cients, and so on are in progress.

In the conventional lattice models of the crystal-melt in-
terface [6,13] we neglect the density change due to melting
or crystallization because the volume change there is only
about 10%. The present success for the hard-sphere crystal-
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melt interface in equilibrium shows the necessity of the
theory in which the contribution of density difference is in-
corporated. In the usual expression of the chemical potential
difference,

Apu=Ae—TAs+pAv, (2)
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it is not obvious, in general, whether the term pAv is negli-
gible or not in comparison with the first two terms. In the
hard-core case, Ae=0 is exactly satisfied. Accordingly, in-
corporation of the terms TAs and pAv is essential in the
case such as the hard-core system.
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